Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten

Learning with Submodular Functions

A Convex Optimization Perspective

Francis Bach
Paperback | Engels | Foundations and Trends(r) in Machine Learning | nr. 19
€ 85,45
+ 170 punten
Levertermijn 1 à 4 weken
Eenvoudig bestellen
Veilig betalen
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions, and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In Learning with Submodular Functions: A Convex Optimization Perspective, the theory of submodular functions is presented in a self-contained way from a convex analysis perspective, presenting tight links between certain polyhedra, combinatorial optimization and convex optimization problems. In particular, it describes how submodular function minimization is equivalent to solving a wide variety of convex optimization problems. This allows the derivation of new efficient algorithms for approximate and exact submodular function minimization with theoretical guarantees and good practical performance. By listing many examples of submodular functions, it reviews various applications to machine learning, such as clustering, experimental design, sensor placement, graphical model structure learning or subset selection, as well as a family of structured sparsity-inducing norms that can be derived and used from submodular functions. Learning with Submodular Functions: A Convex Optimization Perspective is an ideal reference for researchers, scientists, or engineers with an interest in applying submodular functions to machine learning problems.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
258
Taal:
Engels
Reeks:
Reeksnummer:
nr. 19

Eigenschappen

Productcode (EAN):
9781601987563
Verschijningsdatum:
4/12/2013
Uitvoering:
Paperback
Formaat:
Trade paperback (VS)
Afmetingen:
156 mm x 234 mm
Gewicht:
367 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 170 punten op je klantenkaart van Standaard Boekhandel
SOLDEN

30% korting

op een mooie selectie boeken en papierwaren
SOLDEN
Solden: 30% korting op boeken en papierwaren
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.