Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België
Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Automated theorem proving represents a significant and long-standing area of research in computer science, with numerous applications. A large proport...Lees meer
Thompson sampling is an algorithm for online decision problems where actions are taken sequentially in a manner that must balance between exploiting w...Lees meer
Monte Carlo methods, in particular those based on Markov chains and on interacting particle systems, are by now tools that are routinely used in machi...Lees meer
Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an ...Lees meer
Black-box machine learning models are now routinely used in high-risk settings, like medical diagnostics, which demand uncertainty quantification to a...Lees meer
Reinforcement learning (RL) is one of the foundational pillars of artificial intelligence and machine learning. An important consideration in any opti...Lees meer
Random matrices now play a role in many areas of theoretical, applied, and computational mathematics. It is therefore desirable to have tools for stud...Lees meer
Random matrix theory plays a central role in statistical physics, computational mathematics and engineering sciences, including data assimilation, sig...Lees meer
Non-convex Optimization for Machine Learning takes an in-depth look at the basics of non-convex optimization with applications to machine learning. It...Lees meer
This book gives a broad and accessible introduction to multi-armed bandits, a rich, multi-disciplinary area of increasing importance. The material is ...Lees meer
Adaptation, Learning, and Optimization over Networks deals with the topic of information processing over graphs. The presentation is largely self-cont...Lees meer
Can machine learning deliver AI? Theoretical results, inspiration from the brain and cognition, as well as machine learning experiments suggest that i...Lees meer
In contemporary science and engineering applications, the volume of available data is growing at an enormous rate. Spectral methods have emerged as a ...Lees meer
Bayesian methods for machine learning have been widely investigated, yielding principled methods for incorporating prior information into inference al...Lees meer
This monograph builds on Tensor Networks for Dimensionality Reduction and Large-scale Optimization: Part 1 Low-Rank Tensor Decompositions by discussin...Lees meer
As data is a predominant resource in applications, Riemannian geometry is a natural framework to model and unify complex nonlinear sources of data. Ho...Lees meer
Sequential decision making, commonly formalized as Markov Decision Process (MDP) optimization, is an important challenge in artificial intelligence. T...Lees meer
A Hilbert space embedding of a distribution--in short, a kernel mean embedding--has recently emerged as a powerful tool for machine learning and stati...Lees meer
The formalism of probabilistic graphical models provides a unifying framework for capturing complex dependencies among random variables, and building ...Lees meer
Determinantal point processes (DPPs) are elegant probabilistic models of repulsion that arise in quantum physics and random matrix theory. In contrast...Lees meer
The authors of this monograph survey recent progress in using spectral methods including matrix and tensor decomposition techniques to learn many popu...Lees meer
Learning Representation and Control in Markov Decision Processes describes methods for automatically compressing Markov decision processes (MDPs) by l...Lees meer
Kernel methods are among the most popular techniques in machine learning. From a regularization theory perspective, they provide a natural choice for ...Lees meer
An Introduction to Conditional Random Fields provides a comprehensive tutorial aimed at application-oriented practitioners seeking to apply CRFs. The ...Lees meer