Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Complex industrial or robotic systems with uncertainty and disturbances are difficult to control. As system uncertainty or performance requirements increase, it becomes necessary to augment traditional feedback controllers with additional feedback loops that effectively "add intelligence" to the system. Some theories of artificial intelligence (AI) are now showing how complex machine systems should mimic human cognitive and biological processes to improve their capabilities for dealing with uncertainty.This book bridges the gap between feedback control and AI. It provides design techniques for "high-level" neural-network feedback-control topologies that contain servo-level feedback-control loops as well as AI decision and training at the higher levels. Several advanced feedback topologies containing neural networks are presented, including "dynamic output feedback", "reinforcement learning" and "optimal design", as well as a "fuzzy-logic reinforcement" controller. The control topologies are intuitive, yet are derived using sound mathematical principles where proofs of stability are given so that closed-loop performance can be relied upon in using these control systems. Computer-simulation examples are given to illustrate the performance.