Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Hauptziel des Buches ist die Vermittlung des Grundbestandes der Algebraischen Zahlentheorie einschließlich der Theorie der normalen Erweiterungen bis hin zu einem Ausblick auf die Klassenkörpertheorie. Gleichberechtigt mit algebraischen Zahlen werden auch algebraische Funktionen behandelt. Dies geschieht einerseits um die Analogie zwischen Zahl- und Funktionenkörpern aufzuzeigen, die besonders deutlich im Falle eines endlichen Konstantenkörpers ist. Andererseits erhält man auf diese Weise eine Einführung in die Theorie der "höheren Kongruenzen" als eines wesentlichen Bestandteils der "Arithmetischen Geometrie". Obgleich das Buch hauptsächlich algebraischen Methoden gewidmet ist, findet man in der Einleitung auch einen kurzen Beweis des Primzahlsatzes nach Newman. In den Kapiteln 7 und 8 wird die Theorie der Heckeschen L-Reihen behandelt einschließlich der Verteilung der Primideale algebraischer Zahlkörper in Kegeln. Wie bei allen Bänden dieser Reihe, wird großer Wert auf Motivierung, Beispiele und Übungsaufgaben gelegt. Voraussetzungen: Lineare Algebra im Umfang einer zweisemestrigen Vorlesung, Algebra im Umfang einer einsemestrigen Vorlesung. Als Literatur wird hierzu empfohlen: G.Fischer, Lineare Algebra, E.Kunz, Algebra.