Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Uber die im folgenden behandelten Fragen der Himmelsmechanik habe ich in Frankfurt am Main und Baltimore sowie wiederholt in Gottingen und Princeton gelesen, am ausftihrlichsten in einem vier- sttindigen Gottinger Kolleg des Wintersemesters 1951/52. Herr Dr. J. MOSER, jetzt in ew York, hat damals eine sorgfaltige Xachschrift angefertigt, welche dieser Veroffentlichung zugrunde liegt. Ich bin kein Astronom yon Fach und habe deshalb auch keinen Versuch gemacht, die tiblichen Methoden zur praktischen Bahnbestim- mung erneut darzustellen, tiber die es bekanntlich gute Lehrbticher gibt. Es wird sich yielmehr yorwiegend darum handeln, einige Ideen und Resultate zu entwickeln, welche im Laufe der letzten 70 Jahre tiber das Verhalten der Losungen von Differentialgleichungen im groBen ent- standen sind, wobei allerdings die Anwendungen auf HAMILToNsche Systeme und insbesondere die Bewegungsgleichungen des Dreikorper- problems einen wichtigen Platz einnehmen. Auch hier habe ich keine Vollstandigkeit angestrebt, sondern die Auswahl so getroffen, wie sie durch personliches Interesse und die Hoffnung auf Anregung der Horer im Rahmen einer Vorlesung geboten wurde. Nach einleitenden Betrachtungen zur Transformationstheorie der Differentialgleichungen ist das Ziel des ersten Kapitels eine Darstellung der wichtigen Ergebnisse von K. F. SUNDMAN zum Dreikorperproblem. Obwohl die SUNDMANschen Satze bald 50 Jahre alt sind, so sind sie nur in klein em Kreise bekannt geworden und haben auf die spatere Entwicklung kaum gewirkt. Nachst POINCARES Leistungen zur Theorie der Differentialgleichungen gehoren SUNDMANs Arbeiten trotz ihres speziellen Charakters vielleicht zu den bedeutendsten neueren Ergeb- nissen auf dies em Gebiet.