Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
"Exceptionally well written." -- School Science and Mathematics "A very fine book." -- Mathematics Teacher "Of real service to logicians and philosophers who have hitherto had no access to a concise and accurate introduction to the general theory of sets." -- Philosophical Review This is the clearest and simplest introduction yet written to the theory of sets. Making use of the discoveries of Cantor, Russell, Weierstrass, Zermelo, Bernstein, Dedekind, and other mathematicians, it analyzes concepts and principles and offers innumerable examples. Its emphasis is on fundamentals and the presentation is easily comprehensible to readers with some college algebra. But special subdivisions, such as the theory of sets of points, are considered. The contents include rudiments (first classifications, subsets, sums, intersection of sets, nonenumerable sets, etc.); arbitrary sets and their cardinal numbers (extensions of number concept, equivalence of sets, sums and products of two and many cardinal numbers, etc.); ordered sets and their order types; and well-ordered sets and their ordinal numbers (addition and multiplication of ordinal numbers, transfinite induction, products and powers of ordinal numbers, well-ordering theorem, well-ordering of cardinal and ordinal numbers, etc.).