Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

The Unsupervised Learning Workshop

Get started with unsupervised learning algorithms and simplify your unorganized data to help make future predictions

Aaron Jones, Christopher Kruger, Benjamin Johnston
Paperback | Engels
€ 43,45
+ 86 punten
Levering 1 à 2 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Learning how to apply unsupervised algorithms on unlabeled datasets from scratch can be easier than you thought with this beginner's workshop, featuring interesting examples and activities

Key Features

  • Get familiar with the ecosystem of unsupervised algorithms
  • Learn interesting methods to simplify large amounts of unorganized data
  • Tackle real-world challenges, such as estimating the population density of a geographical area

Book Description

Do you find it difficult to understand how popular companies like WhatsApp and Amazon find valuable insights from large amounts of unorganized data? The Unsupervised Learning Workshop will give you the confidence to deal with cluttered and unlabeled datasets, using unsupervised algorithms in an easy and interactive manner.

The book starts by introducing the most popular clustering algorithms of unsupervised learning. You'll find out how hierarchical clustering differs from k-means, along with understanding how to apply DBSCAN to highly complex and noisy data. Moving ahead, you'll use autoencoders for efficient data encoding.

As you progress, you'll use t-SNE models to extract high-dimensional information into a lower dimension for better visualization, in addition to working with topic modeling for implementing natural language processing (NLP). In later chapters, you'll find key relationships between customers and businesses using Market Basket Analysis, before going on to use Hotspot Analysis for estimating the population density of an area.

By the end of this book, you'll be equipped with the skills you need to apply unsupervised algorithms on cluttered datasets to find useful patterns and insights.

What you will learn

  • Distinguish between hierarchical clustering and the k-means algorithm
  • Understand the process of finding clusters in data
  • Grasp interesting techniques to reduce the size of data
  • Use autoencoders to decode data
  • Extract text from a large collection of documents using topic modeling
  • Create a bag-of-words model using the CountVectorizer

Who this book is for

If you are a data scientist who is just getting started and want to learn how to implement machine learning algorithms to build predictive models, then this book is for you. To expedite the learning process, a solid understanding of the Python programming language is recommended, as you'll be editing classes and functions instead of creating them from scratch.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
550
Taal:
Engels

Eigenschappen

Productcode (EAN):
9781800200708
Verschijningsdatum:
28/07/2020
Uitvoering:
Paperback
Formaat:
Trade paperback (VS)
Afmetingen:
190 mm x 235 mm
Gewicht:
934 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 86 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.