Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
"A very simple but instructive problem was treated by Jacob Steiner, the famous representative of geometry at the University of Berlin in the early nineteenth century. Three villages A,B ,C are to be joined by a system of roads of minimum length. " Due to this remark of Courant and Robbins (1941), a problem received its name that actually reaches two hundred years further back and should more appropriately be attributed to the French mathematician Pierre Fermat. At the end of his famous treatise "Minima and Maxima" he raised the question to find for three given points in the plane a fourth one in such a way that the sum of its distances to the given points is minimized - that is, to solve the problem mentioned above in its mathematical abstraction. It is known that Evangelista Torricelli had found a geometrical solution for this problem already before 1640. During the last centuries this problem was rediscovered and generalized by many mathematicians, including Jacob Steiner. Nowadays the term "Steiner prob lem" refers to a problem where a set of given points PI, . . . ,Pn have to be connected in such a way that (i) any two of the given points are joined and (ii) the total length (measured with respect to some predefined cost function) is minimized.