Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The Schwarz lemma is among the simplest results in complex analysis that capture the rigidity of holomorphic functions. This self-contained volume provides a thorough overview of the subject; it assumes no knowledge of intrinsic metrics and aims for the main results, introducing notation, secondary concepts, and techniques as necessary. Suitable for advanced undergraduates and graduate students of mathematics, the two-part treatment covers basic theory and applications. Starting with an exploration of the subject in terms of holomorphic and subharmonic functions, the treatment proves a Schwarz lemma for plurisubharmonic functions and discusses the basic properties of the Poincaré distance and the Schwarz-Pick systems of pseudodistances. Additional topics include hyperbolic manifolds, special domains, pseudometrics defined using the (complex) Green function, holomorphic curvature, and the algebraic metric of Harris. The second part explores fixed point theorems and the analytic Radon-Nikodym property.