Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Over the last few decades, numerous experiments have been operated to search for dark matter, the mysterious component of the universe. The dark matter is unseen and only known by its gravitational effect, but it greatly outnumbers the normal matter concluded from a wide variety of evidence. Since the dark matter only interacts weakly with normal substance, the experiment to search for it is preferred to be located deeply underground and surrounded by layers of shielding materials, which is to diminish the influence of background radiations. One has to have a quantitative idea of the radiation level and the effectiveness of the proposed shielding strategy in order to operate an experiment with a desired sensitivity. This work is to list the background radiations presented at SNOLAB and to examine the water tank shield of the detector testing facility for SuperCDMS experiment by means of Monte Carlo simulation. It is found that the goal of