Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Covariance matrices have found applications in many diverse areas. These include beamforming in array processing; portfolio analysis in finance; classification of data and the handling of high-frequency data. Structured Robust Covariance Estimation considers the estimation of covariance matrices in non-standard conditions including heavy-tailed distributions and outlier contamination. Prior knowledge on the structure of these matrices is exploited in order to improve the estimation accuracy. The distributions, structures and algorithms are all based on an extension of convex optimization to manifolds. Structured Robust Covariance Estimation also provides a self-contained introduction and survey of the theory known as geodesic convexity. This is a generalized form of convexity associated with positive definite matrix variables. The fundamental g-convex sets and functions are detailed, along with the operations that preserve them, and their application to covariance estimation. This monograph will be of interest to researchers and students working in signal processing, statistics and optimization.