Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Modelling real-life systems and phenomena using mathematical based formalisms is ubiquitous in science and engineering. The reason is that mathematics offer a suitable framework to carry out formal and rigorous analysis of these systems. For instance, in software engineering, formal methods are among the most efficient tools to identify flaws in software. The behavior of many real-life systems is inherently stochastic which require stochastic models such as labelled Markov processes (LMPs), Markov decision processes (MDPs), predictive state representations (PSRs), etc. This thesis is about quantifying the difference between stochastic systems. The important point of the thesis is that reinforcement learning (RL), a branch of artificial intelligence particularly efficient in presence of uncertainty, can be used to quantify efficiently the divergence between stochastic systems. The key idea is to define an MDP out of the systems to be compared and then to interpret the optimal value of the MDP as the divergence between them. The most appealing feature of the proposed approach is that it does not rely on the knowledge of the internal structure of the systems.