Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The processing of weak electromagnetic signals at radio frequencies demands for extremely low noise amplifiers (LNAs). InGaAs high-electron-mobility transistors (HEMTs) provide state-of-the-art noise performance. Still, they need to be cryogenically cooled to fulfill the noise requirements of applications such as radio-astronomy or quantum bit read-out. Future cryogenic systems will need to increase the number of LNAs to enhance their performance, which demands for a reduction of the LNA size, power consumption, and noise. This work describes the characterization, modeling, and optimization of HEMTs for cryogenic ultra-low noise amplification. A novel scalable and temperature dependent HEMT model is proposed, which allows for circuit and technology optimizations. Several HEMT technologies are investigated and an optimized version for cryogenic ultra-low-noise amplification is provided. Combining the accurate model data with the optimized technology allows to design LNAs optimized for cryogenic use. As a result, a monolithic 4 - 8 GHz LNA with low footprint, low power consumption, and a noise temperature of 3.6 K is demonstrated, which sets the state of the art among monolithic LNAs.