Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In diesem Buch werden einige Gebiete der algebraischen Topologie, die man heute größtenteils zum klassischen Bestand rechnet, mit semi- simplizialen Methoden in einheitlicher Weise dargestellt. Der Begriff der semisimplizialen Menge ist dabei von grundlegender Bedeutung. Er wurde um 1950 von EILENBERG und ZILBER bei der Untersuchung der singulären Homologietheorie geprägt. Seine Nützlichkeit für die alge- braische Topologie, und zwar nicht nur für die Homologietheorie, erwies sich bald darauf durch die Arbeiten von DOLD, KAN, MACLANE, MOORE und POSTNIKOV. Durch sie wurde das vorliegende Buch angeregt. Die semisimpliziale Menge steht zwischen der Topologie und der Algebra. Einerseits ist ihre Struktur so "algebraisch", daß man direkt Homologie-und Homotopiegruppen für sie definieren und allgemeine Zusammenhänge zwischen ihnen beweisen kann. Andererseits haben viele topologische Begriffe, wie z. B. die Faserung oder die Homotopie ein semisimpliziales Gegenstück. Der Zusammenhang zwischen der Topologie und der semisimplizialen Theorie beschränkt sich nicht auf diese Analogie: Es gibt einen Funktor S von der Kategorie der topo- logischen Räume in die Kategorie der semisimplizialen Mengen, der die topologischen Begriffe in die entsprechenden semisimplizialen über- führt. "Semisimpliziale algebraische Topologie" bedeutet am Beispiel der singulären Homologietheorie: Man ordnet dem Raum X seine semi- simpliziale Menge SX zu, definiert die Homologie von SX als singuläre Homologie des Raumes X und folgert die Eigenschaften der singulären Homologietheorie aus denen der Homologie semisimplizialer Mengen. In dieser Weise werden die Homotopietheorie, die Homologie-und Kohomologietheorie semisimplizial entwickelt.