Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Non-fictie
  3. Wetenschap
  4. Aardrijkskunde & Aardwetenschappen
  5. Seismic driven reservoir characterization for porosity estimation

Seismic driven reservoir characterization for porosity estimation

An integrated approach for thin bed reservoir delineation using well and 3D seismic based reservoir characterization

Muhammad Naeem
Paperback | Engels
€ 54,45
+ 108 punten
Levertermijn 1 à 4 weken
Eenvoudig bestellen
Veilig betalen
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

In the present research, 3D post-stack seismic dataset was evaluated along with 38 wells from Boonsville Field, Fort Worth Basin, Texas, USA. Fluvio-deltaic deposit of Bend Conglomerate from Pennsylvanian age was the main target reservoir of this study. Single and multi-attribute analysis has been done on selected data using a multi linear regression transforms to derive the porosity maps at the Runaway and Vineyard Formations. Total of six seismic attributes namely, seismic amplitude, integrated trace, amplitude envelope, instantaneous phase, instantaneous frequency, and acoustic impedance (AI) are used in current study. A slice of 10ms was obtained for each attribute and are used to derive the porosity distribution maps. Porosity of the selected horizons was measured using the single & multi-attributes. The cross-validation analysis of predicted and actual porosity at well locations indicated that multi-attribute transforms produced the porosity map with 90% accuracy whereas; a single AI attribute produced only 70% prediction. This study indicates that multi-attribute transformation is more accurate and can be used for accurate porosity estimation away from well control.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
108
Taal:
Engels

Eigenschappen

Productcode (EAN):
9783659491801
Uitvoering:
Paperback
Afmetingen:
150 mm x 220 mm
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 108 punten op je klantenkaart van Standaard Boekhandel
SOLDEN

30% korting

op een mooie selectie boeken en papierwaren
SOLDEN
Solden: 30% korting op boeken en papierwaren
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.