Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The ever increasing complexity in mobile radio networks calls for increasingly sophisticated evaluation and planning methodologies. Within this thesis, a major evolution on the areas of models, propagation and software is achieved. New modelling capabilities allow to compose heterogeneous large-scale scenarios in a much more detailed and realistic way. The scenarios feature facets that are modelled for the first time, e.g. distinct individual mobility traces and full 3D building and interior plans for an entire city. Very detailed measurement campaigns have been carried out to gain insights into spatial propagation characteristics in outdoor-to-indoor, indoor-to-outdoor and in-house environments. Several propagation models and predictors have been developed and validated, which are capable of dealing with these highly detailed scenarios, resulting in a high-resolution 3D perspective of an outdoor and indoor mobile network. Furthermore, a novel 3D ray-launching method for the prediction of time-variant scenarios caused by moving persons is introduced. This is particularly relevant for communication systems operating in indoor environments and at frequencies from 60 GHz up to the THz range. Finally, the simulation platform SiMoNe (Simulator for Mobile Networks) is developed, which is capable of performing computationally fast and efficient network-level simulations in these detailed scenarios and in a plethora of different configurations in parallel. SiMoNe handles unprecedented simulation scenarios and levels of detail. This is crucial for the development and evaluation of higher-level network algorithms. All in all, these new methods are suited to become part of the standard repertoire of modelling capabilities for mobile radio networks.