• Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

R Deep Learning Essentials

A step-by-step guide to building deep learning models using TensorFlow, Keras, and MXNet, 2nd Edition

Mark Hodnett
Paperback | Engels
€ 43,45
+ 86 punten
Levering 1 à 2 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Implement neural network models in R 3.5 using TensorFlow, Keras, and MXNet

Key Features

  • Use R 3.5 for building deep learning models for computer vision and text
  • Apply deep learning techniques in cloud for large-scale processing
  • Build, train, and optimize neural network models on a range of datasets
  • Book Description

    Deep learning is a powerful subset of machine learning that is very successful in domains such as computer vision and natural language processing (NLP). This second edition of R Deep Learning Essentials will open the gates for you to enter the world of neural networks by building powerful deep learning models using the R ecosystem.

    This book will introduce you to the basic principles of deep learning and teach you to build a neural network model from scratch. As you make your way through the book, you will explore deep learning libraries, such as Keras, MXNet, and TensorFlow, and create interesting deep learning models for a variety of tasks and problems, including structured data, computer vision, text data, anomaly detection, and recommendation systems. You'll cover advanced topics, such as generative adversarial networks (GANs), transfer learning, and large-scale deep learning in the cloud. In the concluding chapters, you will learn about the theoretical concepts of deep learning projects, such as model optimization, overfitting, and data augmentation, together with other advanced topics.

    By the end of this book, you will be fully prepared and able to implement deep learning concepts in your research work or projects.

    What you will learn

  • Build shallow neural network prediction models
  • Prevent models from overfitting the data to improve generalizability
  • Explore techniques for finding the best hyperparameters for deep learning models
  • Create NLP models using Keras and TensorFlow in R
  • Use deep learning for computer vision tasks
  • Implement deep learning tasks, such as NLP, recommendation systems, and autoencoders
  • Who this book is for

    This second edition of R Deep Learning Essentials is for aspiring data scientists, data analysts, machine learning developers, and deep learning enthusiasts who are well versed in machine learning concepts and are looking to explore the deep learning paradigm using R. Fundamental understanding of the R language is necessary to get the most out of this book.

    Specificaties

    Betrokkenen

    Auteur(s):
    Uitgeverij:

    Inhoud

    Aantal bladzijden:
    378
    Taal:
    Engels

    Eigenschappen

    Productcode (EAN):
    9781788992893
    Verschijningsdatum:
    22/08/2018
    Uitvoering:
    Paperback
    Formaat:
    Trade paperback (VS)
    Afmetingen:
    190 mm x 235 mm
    Gewicht:
    648 g
    Standaard Boekhandel

    Alleen bij Standaard Boekhandel

    + 86 punten op je klantenkaart van Standaard Boekhandel
    E-BOOK ACTIE

    Tot meer dan 50% korting

    op een selectie e-books
    E-BOOK ACTIE
    E-book kortingen
    Standaard Boekhandel

    Beoordelingen

    We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.