Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Julian Schwinger had plans to write a textbook on quantum mechanics since the 1950s when he was teaching the subject at Harvard University regularly. * t Roger Newton remembers: [A] group of us (Stanley Deser, Dick Arnowitt, Chuck Zemach, Paul Martin and I forgot who else) wrote up lecture notes on his Quantum Mechanics course but he never wanted them published because he "had not yet found the perfect way to do quantum mechanics. " The only text of those days that got published eventually - following a sug- gestion by, and with the help of, Robert Kohler: !: - were the notes to the lectures that Schwinger presented at Les Houches in 1955. The book was reissued in 1991, with this Special Preface by Schwinger [3]: The first two chapters of this book are devoted to Quantum Kine- matics. In 1985 I had the opportunity to review that development in connection with the celebration of the 100th anniversary of Hermann Weyl's birthday. [ . . . ] In presenting my lecture [4] I felt the need to alter only one thing: the notation. Lest one think this rather triv- ial, recall that the ultimate abandonment, early in the 19th century, of Newton's method of fluxions in favor of the Leibnizian calculus, stemmed from the greater flexibility of the latter's notation.