Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
As part of the best-selling Pocket Primer series, this book is designed to prepare programmers for machine learning and deep learning/TensorFlow topics. It begins with a quick introduction to Python, followed by chapters that discuss NumPy, Pandas, Matplotlib, and scikit-learn. The final two chapters contain an assortment of TensorFlow 1.x code samples, including detailed code samples for TensorFlow Dataset (which is used heavily in TensorFlow 2 as well). A TensorFlow Dataset refers to the classes in the tf.data.Dataset namespace that enables programmers to construct a pipeline of data by means of method chaining so-called lazy operators, e.g., map(), filter(), batch(), and so forth, based on data from one or more data sources. Companion files with source code are available for downloading from the publisher by writing info@merclearning.com. Features: A practical introduction to Python, NumPy, Pandas, Matplotlib, and introductory aspects of TensorFlow 1.x Contains relevant NumPy/Pandas code samples that are typical in machine learning topics, and also useful TensorFlow 1.x code samples for deep learning/TensorFlow topics Includes many examples of TensorFlow Dataset APIs with lazy operators, e.g., map(), filter(), batch(), take() and also method chaining such operators Assumes the reader has very limited experience Companion files with all of the source code examples (download from the publisher)