Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Summary 1. Projectively flat Finsler spaces were introduced by Douglas [2], and studied by Berwald [1] for 2-dimension. Okumura [11] gave certain properties of projectively flat non-Riemannian spaces admitting concircular and torse-forming vector fields in association with symmetric and recurrent properties of their curvature tensors. Meher [3] studied projective flatness in a Finsler space when Berwald's curvature tensor is recurrent. He derived relations connecting the curvature tensor and the recurrence vector. Pandey [13] derived a necessary and sufficient condition for the projective flatness of a Finsler space in terms of its isotropic property. Currently, projective flatness of Finsler spaces Fn, n > 2, is studied in association with their sectional curvature, symmetric and recurrent character of their curvature, and normal projective curvature tensor. The notation and symbolism used here are mainly based on the works [10] and [14]. 2. Concircular transformations, introduced by Yano [13] in Riemannian geometry, were extended by Takano [12] to affine geometry with recurrent curvature. Okumura [7] extended these to different types of Riemanna