Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
Bedankt voor het vertrouwen het afgelopen jaar! Om jou te bedanken bieden we GRATIS verzending (in België) aan op alles gedurende de hele maand januari.
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Non-fictie
  3. Informatica
  4. Computerwetenschappen
  5. Probability and Statistics for Computer Science

Probability and Statistics for Computer Science

David Forsyth
Hardcover | Engels
€ 63,45
+ 126 punten
Uitvoering
Levertermijn 1 à 4 weken
Eenvoudig bestellen
Veilig betalen
In januari gratis thuislevering in België (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

This textbook is aimed at computer science undergraduates late in sophomore or early in junior year, supplying a comprehensive background in qualitative and quantitative data analysis, probability, random variables, and statistical methods, including machine learning.

With careful treatment of topics that fill the curricular needs for the course, Probability and Statistics for Computer Science features:

- A treatment of random variables and expectations dealing primarily with the discrete case.

- A practical treatment of simulation, showing how many interesting probabilities and expectations can be extracted, with particular emphasis on Markov chains.

- A clear but crisp account of simple point inference strategies (maximum likelihood; Bayesian inference) in simple contexts. This is extended to cover some confidence intervals, samples and populations for random sampling with replacement, and the simplest hypothesis testing.

- Achapter dealing with classification, explaining why it's useful; how to train SVM classifiers with stochastic gradient descent; and how to use implementations of more advanced methods such as random forests and nearest neighbors.

- A chapter dealing with regression, explaining how to set up, use and understand linear regression and nearest neighbors regression in practical problems.

- A chapter dealing with principal components analysis, developing intuition carefully, and including numerous practical examples. There is a brief description of multivariate scaling via principal coordinate analysis.

- A chapter dealing with clustering via agglomerative methods and k-means, showing how to build vector quantized features for complex signals.

Illustrated throughout, each main chapter includes many worked examples and other pedagogical elements such as

boxed Procedures, Definitions, Useful Facts, and Remember This (short tips). Problems and Programming Exercises are at the end of each chapter, with a summary of what the reader should know.

Instructor resources include a full set of model solutions for all problems, and an Instructor's Manual with accompanying presentation slides.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
367
Taal:
Engels

Eigenschappen

Productcode (EAN):
9783319644097
Verschijningsdatum:
20/02/2018
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
279 mm x 215 mm
Gewicht:
1279 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 126 punten op je klantenkaart van Standaard Boekhandel
SOLDEN

30% korting

op een mooie selectie boeken en papierwaren
SOLDEN
Solden: 30% korting op boeken en papierwaren
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.