Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
As higher and higher frequencies are employed in communication systems of the next generation, amplifiers that can deliver large power levels in these applications are crucial components. Conventionally, in the mm-wave frequency range, they are realized using vacuum tubes. However, due to their inherent advantages, solid-state based amplifiers (SSPAs) are an alternative of great interest. To that end, this thesis is concerned with the design of a broadband amplifier system based on gallium nitride (GaN) semiconductors. It consists of two parts, the first of which analyzes implementation methods for broadband amplifier integrated circuits with high output power. In the second part, a thorough comparison of several combiner topologies is presented with a focus on their suitability towards higher frequencies. Furthermore, a 16-way radial-line combiner system is developed which contains several novel components, yielding significant benefits in efficency and bandwidth. Using these concepts, a two-stage 16-way SSPA is assembled and characterized. It delivers an output power of nearly 100 W in most of the Ka band, and thus significantly advances the state of the art.