Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Revision with unchanged content. The estimation of the plausibility of a set of observations basically depends on the main structure which stands behind these data. Observations which fit into this estimated structure seem more plausible, than observations with large distance to such structure estimates. For representing the structure of a data set, here principal components are used. Since single observations which do not follow the main structure of a data set (outliers) should not influence such estimations, robust methods are considered primarily in this context. The estimation of missing values is based on principal component analysis as well. Iteratively principal components are estimated, and observations are projected onto them until convergence of this process. In this context existing algorithms have been improved concerning the quality of imputation and runtime behavior. In particular this improvement focuses on the projection methods which are used to project observations containing missings onto principal components.