Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Make data analysis fast, reliable, and clean with Python, Pandas and Matplotlib.Key FeaturesA detailed walk-through of the Pandas library's features with multiple examples.Numerous graphical representations and reporting capabilities using popular Matplotlib.A high-level overview of extracting data from including files, databases, and the web.DescriptionNo matter how large or small your dataset is, the author 'Fabio Nelli' simply used this book to teach all the finest technical coaching on applying Pandas to conduct data analysis with zero worries.Both newcomers and seasoned professionals will benefit from this book. It teaches you how to use the pandas library in just one week. Every day of the week, you'll learn and practise the features and data analysis exercises listed below: Day 01: Get familiar with the fundamental data structures of pandas, including Declaration, data upload, indexing, and so on.Day 02: Execute commands and operations related to data selection and extraction, including slicing, sorting, masking, iteration, and query execution.Day 03: Advanced commands and operations such as grouping, multi-indexing, reshaping, cross-tabulations, and aggregations.Day 04: Working with several data frames, including comparison, joins, concatenation, and merges.Day 05: Cleaning, pre-processing, and numerous strategies for data extraction from external files, the web, databases, and other data sources.Day 06: Working with missing data, interpolation, duplicate labels, boolean data types, text data, and time-series datasets.Day 07: Introduction to Jupyter Notebooks, interactive data analysis, and analytical reporting with Matplotlib's stunning graphics.What you will learnExtract, cleanse, and process data from databases, text files, HTML pages, and JSON data.Work with DataFrames and Series, and apply functions to scale data manipulations.Graph your findings using charts typically used in modern business analytics.Learn to use all of the pandas basic and advanced features independently. Storing and manipulating labeled/columnar data efficiently.Who this book is forIf you're looking to expedite a data science or sophisticated data analysis project, you've come to the perfect place. Each data analysis topic is covered step-by-step with real-world examples. Python knowledge isn't required however, knowing a little bit helpsTable of Contents1. Pandas, the Python library2. Setting up a Data Analysis Environment3. Day 1 - Data Structures in Pandas library4. Day 2 - Working within a DataFrame, Basic Functionalities5. Day 3 - Working within a DataFrame, Advanced Functionalities6. Day 4 - Working with two or more DataFrames7. Day 5 - Working with data sources and real-word datasets8. Day 6 - Troubleshooting Challenges wit Real Datasets9. Day 7 - Data Visualization and Reporting10. Conclusion Moving BeyondRead mor