On démontre l'uniformisation p-adique pour les courbes de Shimura attaché à un groupe de similitudes unitaires pour certains espaces anti-hermitiens V relatifs à un corps CM K, avec sous-corps totalement réel maximal F. Pour une place v|p de F qui n'est pas déploye dans K et pour laquelle la localisation Vv est anisotrope, soit v une extension de v au corps reflex E. On définit un modèle sur Spec OE,(v) de la courbe de Shimura correspondante en posant un problème de modules de variétés abéliennes avec polarisation et structure de niveau premier à p. La formulation du problème de modules fait intervenir une condition de Kottwitz, une condition d'Eisenstein, et la notion d'un invariant rectifié. L'uniformisation du complété formel de ce modèle le long sa fibre spéciale est donné en termes du démi-plan de Drinfeld formelῶFv pour Fv. La démonstration est basée sur la construction d'un foncteur contractant qui rélie un espace de Rapoport-Zink relatif de OFv -modules formels stricts avec un espace de Rapoport-Zink de groupes p-divisibles des variétés abéliennes qui apparaissent dans le problème de modules, pour lesquelles l'action de OFv n'est pas stricte en général si Fv # Qp. Notre outil principal est la théorie des displays, en particulier le foncteur de Ahsendorf.
We prove p-adic uniformization for Shimura curves attached to the group of unitary similitudes of certain binary skew Hermitian spaces V with respect to an arbitrary CM field K with maximal totally real subfield F. For a place v\p of F that is not split in K and for which Vv is anisotropic, let v be an extension of v to the reflex field E. We define an integral model of the corresponding Shimura curve over Spec OE,(v)by means of a moduli problem for abelian schemes with suitable polarization and level structure prime to p. The formulation of the moduli problem involves a Kottwitz condition, an Eisenstein condition, and an adjusted invariant. The uniformization of the formal completion of this model along its special fiber is given in terms of the formal Drinfeld upper half plane ῶFv for Fv. The proof relies on the construction of the contracting functor which relates a relative Rapoport-Zink space for strict formal OFv -modules with a Rapoport-Zink space of p-divisible groups which arise from the moduli problem, where the OFv -action is usually not strict when Fv # Qp. Our main tool is the theory of displays, in particular the Ahsendorf functor.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.