Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Numerische Integration partieller Differentialgleichungen, die physikalische Systeme mit endlicher Ausbreitungsgeschwindigkeit beschreiben, kann dadurch erfolgen, daß das ursprüngliche System mit Hilfe eines diskreten dynamischen Systems modelliert wird. Wenn das ursprüngliche System im eigentlichen physi- kalischen Sinn passiv ist, so läßt es sich durch eine Zeit-Raum-Koordinatentrans- formation in ein System transformieren, das mehrdimensional passiv ist, also passiv in einem verallgemeinerten, nämlich mehrdimensionalen Sinn. Entspre- chend kann dann auch das zugehörige diskrete System mehrdimensional passiv gestaltet werden. Dadurch gelingt es insbesondere, eine geeignete mehrdimensio- nale vektorielle Ljapunow-Funktion verfügbar zu machen. Die wichtigsten Vorteile, die das Verfahren für den sich ergebenden Algorith- mus liefert, sind: massiver Parallelismus, volle Lokalität aller Operationen, leichte Beherrschbarkeit der numerischen Stabilität, hohe Robustheit gegenüber den unvermeidbaren Rechenfehlern (Rundungs- bzw. Schneidefehler, Überlauf- korrekturen), die durch die Beschränktheit der auf einem Rechner zur Verfügung stehenden Wortlängen entstehen, sinnvolle Interpretationsmöglichkeit von Frequenzbereichs-Betrachtungen, Eignung als Grundlage für den Bau massiv paral- leler Spezialrechner. Die Anwendbarkeit des Verfahrens ist für die Akustik, Elektrodynamik, Elastizität und Fluiddynamik nachgewiesen worden.