Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This book presents a comparative study on the static responses of the Euler-Bernoulli beam governed by nonlocal theories, including the Eringen's stress-gradient beam theory, the Mindlin's strain-gradient beam theory, the higher-order beam theory and the peridynamic beam theory. Benchmark examples are solved analytically and numerically using these nonlocal beam equations, including the simply-supported beam, the clamped-clamped beam and the cantilever beam. Results show that beam deformations governed by different nonlocal theories at different boundary conditions show complex behaviors. Specifically, the Eringen's stress-gradient beam equation and the peridynamic beam equation yield a much softer beam deformation for simply-supported beam and clamped-clamped beam, while the beam governed by the Mindlin's strain-gradient beam equation is much stiffer. The cantilever beam exhibits a completely different behavior. The higher-order beam equation can be stiffer or softer depending on thevalues of the two nonlocal parameters. Moreover, the deformation fluctuation of the truncated order peridynamic beam equation is observed and explained from the singularity aspect of the solution expression. This research casts light on the fundamental explanation of nonlocal beam theories in nano-electromechanical systems.