Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Edited by Daniel Goroff, Harvard University This English-language edition of Poincare's landmark work is of interest not only to historians of science, but also to mathematicians. Beginning from an investigation of the three-body problem of Newtonian mechanics, Poincare lays the foundations of the qualitative solutions of differential equations. To investigate the long-unsolved problem of the stability of the Solar System, Poincare invented a number of new techniques including canonical transformations, asymptotic series expansions, and integral invariants. These "new methods" are even now finding applications in chaos and other contemporary disciplines. Contents: Volume I: Periodic and asymptotic solutions: Introduction by Daniel Goroff. Generalities and the Jacobi method. Series integration. Periodic solutions. Characteristic exponents. Nonexistence of uniform integrals. Approximate development of the perturbative function. Asymptotic solutions. Volume II: Approximations by series: Formal calculus. Methods of Newcomb and Lindstedt. Application to the study of secular variations. Application to the three-body problem. Application to orbits. Divergence of the Lindstedt series. Direct calculation of the series. Other methods of direct calculation. Gylden methods. Case of linear equations. Bohlin methods. Bohlin series. Extension of the Bohlin method. Volume III: Integral invariants and asymptotic properties of certain solutions: Integral invariants. Formation of invariants. Use of integral invariants. Integral invariants and asymptotic solutions. Poisson stability. Theory of consequents. Periodic solutions of the second kind. Different forms of the principle of least action.