Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
1. Introduction.- 1.1. Near-Field Optics and Photonics.- 1.1.1. Optical Processes and Electromagnetic Interactions.- 1.2. Ultra-High-Resolution Near-Field Optical Microscopy (NOM).- 1.2.1. From Interference- to Interaction-Type Optical Microscopy.- 1.2.2. Development of Near-Field Optical Microscopy and Related Techniques.- 1.3. General Features of Optical Near-Field Problems.- 1.3.1. Optical Processes and the Scale of Interest.- 1.3.2. Effective Fields and Interacting Subsystems.- 1.3.3. Electromagnetic Interaction in a Dielectric System.- 1.3.4. Optical Near-Field Measurements.- 1.4. Theoretical Treatment of Optical Near-Field Problems.- 1.4.1. Near-Field Optics and Inhomogeneous Waves.- 1.4.2. Field-Theoretic Treatment of Optical Near-Field Problems.- 1.4.3. Explicit Treatment of Field-Matter Interaction.- 1.5. Remarks on Near-Field Optics and Outline of This Book.- 1.5.1. Near-Field Optics and Related Problems.- 1.5.2. Outline of This Book.- 1.6. References.- 2. Principles of Near-Field Optical Microscopy.- 2.1. An Example of Near-Field Optical Microscopy.- 2.2. Construction of the NOM System.- 2.2.1. Building Blocks of the NOM System.- 2.2.2. Environmental Conditions.- 2.2.3. Functions of the Building Blocks.- 2.3. Theoretical Description of Near-Field Optical Microscopy.- 2.3.1. Basic Character of the NOM Process.- 2.3.3. Demonstration of Localization in the Near-Field Interaction.- 2.3.4. Representation of the Spatial Localization of an Electromagnetic Event.- 2.3.5. Model Description of a Local Electromagnetic Interaction.- 2.4. Near-Field Problems and the Tunneling Process.- 2.4.1. Bardeen's Description of Tunneling Current in STM.- 2.4.2. Comparison of the Theoretical Aspects of NOM and STM.- 2.5. References.- 3. Instrumentation.- 3.1. Basic Systems of a Near-Field Optical Microscope.- 3.1.1. Modes of Operation.- 3.1.2. Position Control of the Probe.- 3.1.3. Mechanical Components.- 3.1.4. Noise Sources Internal to the NOM.- 3.1.5. Operation under Special Circumstances.- 3.2. Light Sources.- 3.2.1. Basic Properties of Lasers.- 3.2.2. Characteristics of CW Lasers.- 3.2.3. Additional Noise Properties of CW Lasers.- 3.2.4. Short-Pulse Generation.- 3.2.5. Nonlinear Optical Wavelength Conversion.- 3.3. Light Detection and Signal Amplification.- 3.3.1. Detector.- 3.3.2. Signal Detection and Amplification.- 3.4. References.- 4. Fabrication of Probes.- 4.1. Sharpening of Fibers by Chemical Etching.- 4.1.1. A Basic Sharpened Fiber.- 4.1.2. A Sharpened Fiber with Reduced-Diameter Cladding.- 4.1.3. A Pencil-Shaped Fiber.- 4.1.4. A Flattened-Top Fiber.- 4.1.5. A Double-Tapered Fiber.- 4.2. Metal Coating and Fabrication of a Protruded Probe.- 4.2.1. Removal of Metallic Film by Selective Resin Coating.- 4.2.2. Removal of Metallic Film by Nanometric Photolithography.- 4.3. Other Novel Probes.- 4.3.1. Functional Probes.- 4.3.2. Optically Trapped Probes.- 4.4. References.- 5. Imaging Experiments.- 5.1. Basic Features of the Localized Evanescent Field.- 5.1.1. Size-Dependent Decay Length of the Field Intensity.- 5.1.2. Manifestation of the Short-Range Electromagnetic Interaction.- 5.1.3. High Discrimination Sensitivity of the Evanescent Field Intensity Normal to the Surface.- 5.2. Imaging Biological Samples.- 5.2.1. Imaging by the C-Mode.- 5.2.2. Imaging by the I-Mode.- 5.3. Spatial Power Spectral Analysis of the NOM Image.- 5.4. References.- 6. Diagnostics and Spectroscopy of Photonic Devices and Materials.- 6.1. Diagnosing a Dielectric Optical Waveguide.- 6.2. Spatially Resolved Spectroscopy of Lateral p-n Junctions in Silicon-Doped Gallium Arsenide.- 6.2.1. Photoluminescence and Electroluminescence Spectroscopy.- 6.2.2. Photocurrent Measurement by Multiwavelength NOM.- 6.3. Photoluminescence Spectroscopy of a Semiconductor Quantum Dot.- 6.4. Imaging of Other Materials.- 6.4.1. Fluorescence Detection from Dye Molecules.- 6.4.2. Spectroscopy of Solid-State Materials.- 6.5. References.- 7. Fabrication and Manipulation.- 7.1. Fabrica...