Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Periodic signals can be decomposed into sets of sinusoids having frequencies that are integer multiples of a fundamental frequency. The problem of finding such fundamental frequencies from noisy observations is important in many speech and audio applications, where it is commonly referred to as pitch estimation. These applications include analysis, compression, separation, enhancement, automatic transcription and many more. In this book, an introduction to pitch estimation is given and a number of statistical methods for pitch estimation are presented. The basic signal models and associated estimation theoretical bounds are introduced, and the properties of speech and audio signals are discussed and illustrated. The presented methods include both single- and multi-pitch estimators based on statistical approaches, like maximum likelihood and maximum a posteriori methods, filtering methods based on both static and optimal adaptive designs, and subspace methods based on the principles of subspace orthogonality and shift-invariance. The application of these methods to analysis of speech and audio signals is demonstrated using both real and synthetic signals, and their performance is assessed under various conditions and their properties discussed. Finally, the estimators are compared in terms of computational and statistical efficiency, generalizability and robustness. Table of Contents: Fundamentals / Statistical Methods / Filtering Methods / Subspace Methods / Amplitude Estimation