Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
1. 1. Ausgangslage Seit der Realisierung des ersten Rubinlasers durch Maimon im Jahr 1960 eroffnete die ra- sante Entwicklung von unterschiedlichen Laserstrahlquellen hinsichtlich ihrer Pulslange, Strahlqualitat, Wellenlange, Repetitionsrate und der mittleren Leistung eine Vielzahl von neuen Anwendungsfeldern im Bereich der Medizin-, MeB- und Fertigungstechnik. Die Steigerung der mittleren Strahlleistung und der Strahlqualitat von kontinuierlich gepump- ten Systemen, wie z. B. des Nd: YAG-Lasers und des CO-Lasers, erlauben das Laser- 2 schneiden und -schweiBen mit hohen ProzeBgeschwindigkeiten, so daB diese Verfahren bereits in die industrielle Fertigung eingefiihrt werden konnten. Gepulste Festkorperlaser mit Pulsdauern im Millisekundenbereich haben im Vergleich zu den cw-Lasern eine gerin- gere mittlere Leistung, jedoch verfiigen diese iiber eine hohe Pulsspitzenleistung, so daB als erste fertigungstechnische Anwendung das Bohren untersucht wurde. Aufgrund der Pulsdauern im Millisekundenbereich kommt es aber zur Ausbildung eines ausgepragten Schmelzbades. Als Folge setzen Schmelzaufwiirfe an den Randern der bestrahlten Zone und Schmelzspritzer die QualiUit des Berarbeitungsergebnisses herab. Die Entwicklung von Kurzpulslasern mit Pulsdauern im Bereich von einigen Nanose- kunden, wie z. B. die giitegeschalteten und diodengepumpten Festkorperlaser mit oder ohne Frequenzvervielfachung oder die Excimerlaser, ermoglichte das Abtragen, Bohren und Strukturieren von Keramiken und Polymeren im Submillimeterbereich. Aufgrund der kurzen Pulsdauern wird der Werkstoff, im Gegensatz zu Pulsdauern im Millisekundenbe- reich, kaum thermisch geschadigt und beeinfiuBt, so daB Werkstoffe mit hoher Prazision bearbeitet werden konnen. Gerade der fortschreitende Drang nach Miniaturisierung von Funktionselementen u. a. in der Sensortechnik, der Medizintechnik und der Leiterplatten- technik begiinstigt den Einsatz dieser Laserstrahlquellen.