This book includes nine chapters written by internationally recognized experts, covering all aspects of millisecond pulsars in one concise and cohesive volume. These aspects include pulsations powered by stellar spin, accretion and thermonuclear burning of accreted matter, their physics and utility, stellar evolution and the extreme physics of super-dense stellar cores. The book includes substantial background material as well as recent theoretical and multi-wavelength observational results. The volume will thus be useful for professional astronomers and graduate students alike.
What is the behavior of the strong nuclear interaction, and what are the matter constituents at ultrahigh densities in neutron star cores? How do old neutron stars in binaries evolve? How does their magnetosphere interact with the surrounding plasma to accelerate particles and emit radiation observed at all wavelengths? These are just a few of the questions that millisecond pulsars are helping us answer and will settle in the near future with the next generation of instruments. Such quickly rotating, highly magnetized neutron stars are remarkable natural laboratories that allow us to investigate the fundamental constituents of matter and their interactions under extreme conditions that cannot be reproduced in terrestrial laboratories.