Presents microgrid methodologies in modeling, stability, and control, supported by real-time simulations and experimental studies
Microgrids: Dynamic Modeling, Stability and Control, provides comprehensive coverage of microgrid modeling, stability, and control, alongside new relevant perspectives and research outcomes, with vital information on several microgrid modeling methods, stability analysis methodologies and control synthesis approaches that are supported by real-time simulations and experimental studies for active learning in professionals and students alike.
This book is divided into two parts: individual microgrids and interconnected microgrids. Both parts provide individual chapters on modeling, stability, and control, providing comprehensive information on the background, concepts, and architecture, supported by several examples and corresponding source codes/simulation files. Communication based control and cyber security of microgrids are addressed and new outcomes and advances in interconnected microgrids are discussed.
Summarizing the outcome of more than 15 years of the authors' teaching, research, and projects, Microgrids: Dynamic Modeling, Stability and Control covers specific sample topics such as:
With comprehensive, complete, and accessible coverage of the subject, Microgrids: Dynamic Modeling, Stability and Control is the ideal reference for professionals (engineers, developers) and students working with power/smart grids, renewable energy, and power systems, to enable a more effective use of their microgrids or interconnected microgrids.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.