The integration of microelectromechanical systems (MEMS) and nanotechnology (NT) in sensors and devices significantly reduces their weight, size, power consumption, and production costs. These sensors and devices can then play greater roles in defense operations, wireless communication, the diagnosis and treatment of disease, and many more applications.
MEMS and Nanotechnology-Based Sensors and Devices for Communications, Medical and Aerospace Applications presents the latest performance parameters and experimental data of state-of-the-art sensors and devices. It describes packaging details, materials and their properties, and fabrication requirements vital for design, development, and testing. Some of the cutting-edge materials covered include quantum dots, nanoparticles, photonic crystals, and carbon nanotubes (CNTs).
This comprehensive work encompasses various types of MEMS- and NT-based sensors and devices, such as micropumps, accelerometers, photonic bandgap devices, acoustic sensors, CNT-based transistors, photovoltaic cells, and smart sensors. It also discusses how these sensors and devices are used in a number of applications, including weapons' health, battlefield monitoring, cancer research, stealth technology, chemical detection, and drug delivery.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.