Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
L’apprentissage automatique (Machine Learning) est aujourd’hui en pleine explosion. Mais de quoi s’agit-il exactement, et comment pouvez-vous le mettre en oeuvre dans vos propres projets ? La 3e édition de cet ouvrage de référence vous explique les concepts fondamentaux du Machine Learning et vous apprend à maîtriser les outils qui vous permettront de créer vous-même des systèmes capables d’apprentissage automatique. Vous apprendrez ainsi à utiliser Scikit-Learn, un outil open source très simple et néanmoins très puissant que vous pourrez mettre en place dans vos systèmes en production. Apprendre les bases du Machine Learning en suivant pas à pas toutes les étapes d’un projet utilisant Scikit-Learn et Pandas. Ouvrir les boîtes noires pour comprendre comment fonctionnent les algorithmes. Explorer plusieurs modèles d’entraînement, notamment les machines à vecteur de support (SVM). Comprendre le modèle des arbres de décision et celui des forêts aléatoires, et exploiter la puissance des méthodes ensemblistes. Exploiter des techniques d’apprentissage non supervisées telles que la réduction de dimensionnalité, la classification et la détection d’anomalies. Tous les exemples de code sont disponibles en ligne sous la forme de notebooks Jupyter à l’adresse suivante : https://github.com/ageron/handson-ml3