This is the second edition of an influential monograph on logarithmic potentials with external fields, incorporating some of the numerous advancements made since the initial publication.
As the title implies, the book expands the classical theory of logarithmic potentials to encompass scenarios involving an external field. This external field manifests as a weight function in problems dealing with energy minimization and its associated equilibria. These weighted energies arise in diverse applications such as the study of electrostatics problems, orthogonal polynomials, approximation by polynomials and rational functions, as well as tools for analyzing the asymptotic behavior of eigenvalues for random matrices, all of which are explored in the book. The theory delves into diverse properties of the extremal measure and its logarithmic potentials, paving the way for various numerical methods.
This new, updated edition has been thoroughly revised and is reorganized into three parts, Fundamentals, Applications and Generalizations, followed by the Appendices. Additions to the new edition include:
Aimed at researchers and students studying extremal problems and their applications, particularly those arising from minimizing specific integrals in the presence of an external field, this book assumes a firm grasp of fundamental real and complex analysis. It meticulously develops classical logarithmic potential theory alongside the more comprehensive weighted theory.
We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.