Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Courses that study vectors and elementary matrix theory and introduce linear transformations have proliferated greatly in recent years. Most of these courses are taught at the undergraduate level as part of, or adjacent to, the second-year calculus sequence. Although many students will ultimately find the material in these courses more valuable than calculus, they often experience a class that consists mostly of learning to implement a series of computational algorithms. The objective of this text is to bring a different vision to this course, including many of the key elements called for in current mathematics-teaching reform efforts. Three of the main components of this current effort are the following: 1. Mathematical ideas should be introduced in meaningful contexts, with formal definitions and procedures developed after a clear understanding of practical situations has been achieved. 2. Every topic should be treated from different perspectives, including the numerical, geometric, and symbolic viewpoints. 3. The important ideas need to be visited repeatedly throughout the term, with students' understanding deepening each time. This text was written with these three objectives in mind. The first two chapters deal with situations requiring linear functions (at times, locally linear functions) or linear ideas in geometry for their understanding. These situations provide the context in which the formal mathematics is developed, and they are returned to with increasing sophistication throughout the text.