Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Presenting some recent results on the construction and the moments of Lévy-type processes, the focus of this volume is on a new existence theorem, which is proved using a parametrix construction. Applications range from heat kernel estimates for a class of Lévy-type processes to existence and uniqueness theorems for Lévy-driven stochastic differential equations with Hölder continuous coefficients. Moreover, necessary and sufficient conditions for the existence of moments of Lévy-type processes are studied and some estimates on moments are derived. Lévy-type processes behave locally like Lévy processes but, in contrast to Lévy processes, they are not homogeneous in space. Typical examples are processes with varying index of stability and solutions of Lévy-driven stochastic differential equations. This is the sixth volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applicationsof Lévy processes and pays tribute to the state of the art of this rapidly evolving subject, with special emphasis on the non-Brownian world.