Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Im ersten Teil dieser Arbeit wird ein Framework für den Entwurf eines CNNs für FPGAs vorgestellt, das aus einem eigenen Vorverarbeitungsalgorithmus, einer Augmentierung, einem eigenen Quantisierungsschema und einer Verkleinerung des CNN besteht. Die Kombination von konventioneller Bildverarbeitung mit neuronalen Netzen wird im zweiten Teil anhand eines Beispiels aus der Robotik gezeigt, in dem ein bildbasierter Regler erfolgreich für einen Greifvorgang eines Roboters eingesetzt wird. In the first part of this dissertation, a framework for the design of a CNN for FPGAs is presented, consisting of a preprocessing algorithm, an augmentation technique, a custom quantization scheme and a pruning step of the CNN. The combination of conventional image processing with neural networks is shown in the second part by an example from robotics, where an image-based visual servoing process is successfully conducted for a gripping process of a robot.