Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
  1. Boeken
  2. Non-fictie
  3. Wetenschap
  4. Wiskunde & Statistiek
  5. Industrial Data Analytics for Diagnosis and Prognosis

Industrial Data Analytics for Diagnosis and Prognosis

A Random Effects Modelling Approach

Shiyu Zhou, Yong Chen
Hardcover | Engels
€ 198,45
+ 396 punten
Levering 2 à 3 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model

In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book's two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems.

In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers:

  • A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions
  • Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model
  • An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis
  • A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals

Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
352
Taal:
Engels

Eigenschappen

Productcode (EAN):
9781119666288
Verschijningsdatum:
21/07/2021
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
152 mm x 229 mm
Gewicht:
635 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 396 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.