Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this monograph, we study the relation between graph-index and Watatani's extended Jones index of certain von Neumann algebras. This research provides not only interesting examples of Jones index theory but also the connection between combinatorics (graph theory), algebra (grouopoid theory), operator algebra, and noncommutative dynamical systems. Moreover, the study of graph-index, itself, is an interesting topic in graph theory because these quantities give invariants for quotient structures induced by graphs. We first define the indexes (or the index numbers) of graph inclusions, which are determined by corresponding subgroupoid inclusions. We call them graph-indexes (of graph inclusions). If we take a special graph inclusion, a vertex-full subgraph inclusion, then our graph-index has close connection with Watatani's extended Jones index. We show that Jones indexes of von-Neumann algebra- inclusions are characterized by our graph-indexes, and vice versa, whenever von Neumann algebras are generated by groupoids of graphs. This characterization will be extended to the case where we have graph-groupoid dynamical systems.