Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Lognormal distributions are one of the most commonly studied models in the sta- tistical literature while being most frequently used in the applied literature. The lognormal distributions have been used in problems arising from such diverse fields as hydrology, biology, communication engineering, environmental science, reliability, agriculture, medical science, mechanical engineering, material science, and pharma- cology. Though the lognormal distributions have been around from the beginning of this century (see Chapter 1), much of the work concerning inferential methods for the parameters of lognormal distributions has been done in the recent past. Most of these methods of inference, particUlarly those based on censored samples, involve extensive use of numerical methods to solve some nonlinear equations. Order statistics and their moments have been discussed quite extensively in the literature for many distributions. It is very well known that the moments of order statistics can be derived explicitly only in the case of a few distributions such as exponential, uniform, power function, Pareto, and logistic. In most other cases in- cluding the lognormal case, they have to be numerically determined. The moments of order statistics from a specific lognormal distribution have been tabulated ear- lier. However, the moments of order statistics from general lognormal distributions have not been discussed in the statistical literature until now primarily due to the extreme computational complexity in their numerical determination.