Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Surface electromyography (sEMG), force myography (FMG) and surface electrical impedance myography (sEIM) are investigated for perspective wearable embedded systems. A database has been collected from more than 100 healthy subject performing American sign language (ASL). Classification methods have been proposed based on Extreme Learning Machine (ELM) supported by a grasshopper optimization algorithm (GOA) as a core weight pruning process. To ensure the GOA population diversity a K-tournament selection strategy is included. The K-Tournament Grasshopper Optimization Algorithm (KTGOA) has been improved for discrete optimization problems and implemented to select the ELM weights as a K-Tournament Grasshopper Extreme Learner (KTGEL). To improve the balance of exploration and exploitation, the balancing coefficients of the KTGEL are subjected to uniform randomization. The resulting Random K-Tournament Grasshopper Extreme Learner (RKTGEL) is a novel classifier with a simultaneously automated feature selection. The number of sensors and their positions have been investigated: For FMG, 8 sensors, for sEMG, 2 sensors and for sEIM, 4 equidistant electrodes for measurements in the frequencies from 1 kHz to 4 kHz, are suitable. Combinations of myographic methods reach an accuracy of 100% for small and medium ambiguous datasets. For high ambiguity, a targeted reduction of ambiguity by excluding signs with a high similarity results the RKTGEL to reach an overall accuracy of 97%.