Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco- nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re- quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single- objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob- servation, in multiobjective optimization, the notion of Pareto optimality or effi- ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro- cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so- lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.