Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
The field of intelligent control has recently emerged as a response to the challenge of controlling highly complex and uncertain nonlinear systems. It attempts to endow the controller with the key properties of adaptation, learn- ing and autonomy. The field is still immature and there exists a wide scope for the development of new methods that enhance the key properties of in- telligent systems and improve the performance in the face of increasingly complex or uncertain conditions. The work reported in this book represents a step in this direction. A num- ber of original neural network-based adaptive control designs are introduced for dealing with plants characterized by unknown functions, nonlinearity, multimodal behaviour, randomness and disturbances. The proposed schemes achieve high levels of performance by enhancing the controller's capability for adaptation, stabilization, management of uncertainty, and learning. Both deterministic and stochastic plants are considered. In the deterministic case, implementation, stability and convergence is- sues are addressed from the perspective of Lyapunov theory. When compared with other schemes, the methods presented lead to more efficient use of com- putational storage and improved adaptation for continuous-time systems, and more global stability results with less prior knowledge in discrete-time sys- tems.