Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
In this monograph, we consider the framing process on given graphs. For a fixed graph, we put a frame on it. Such a frame is determined to be an independent mathematical structure (possibly other than graphs). In particular, we frame a graph with measure spaces and groups. This framing technique can be extendable to frame other mathematical structures; for instance, rings, fields, (topological vector) spaces, operator algebra, or operator spaces, etc. Here, we restrict our interests to the cases where the frames are either measure spaces or groups. In Part 1 through Part 3, we investigate the measure-space framing: Part 1 shows the fundamental properties of the measure- space framing, and Part 2 provides the biggest application for the measure-space framing; the free stochastic integration. Part 3 is the extension of Part 1 to the groupoid dynamical systems. In Part 4, we concentrate on the group-framing on graphs. The basic properties are studied. As application, we briefly mention about free-group-framing, and distorted histories.