Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Recently, graphs have been studied and applied in various math and science fileds. In this monograph, we consider graphs with fractal property. Starting with graphs (combinatorial objects), we construct the corresponding groupoids (algebraic objects). The fractal property of graphs and groupoids is detected by the automata labelings (automata-theoretic objects). The groupoids with fractal property will be called graph fractaloids. By defining suitable representations of groupoids, we establish von Neumann algebras (operator-algebraic objects). As elements of the von Neumann algebras, we define the labeling operators (operator-theoretic objects) of graph fractaloids. In Part 1, by computing the free moments (free-probabilistic data) of the operators, we verify how the graph fractaloids act in the von Neumann algebras. Also, based on such computations, we can classify the graph fractaloids, in Part 2. Our classification shows the richness of graph fractaloids which are not fractal groups, in general. In Part 3, we show that, for any finite graph, there always exists a finite fractal graph containing it as its part.