Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
We gebruiken cookies om:
De website vlot te laten werken, de beveiliging te verbeteren en fraude te voorkomen
Inzicht te krijgen in het gebruik van de website, om zo de inhoud en functionaliteiten ervan te verbeteren
Je op externe platformen de meest relevante advertenties te kunnen tonen
Je cookievoorkeuren
Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
Investigating dependence structures of stocks that are related to one another should be an important consideration in managing a stock portfolio, among other investment strategies. To capture various dependence features, we employ copula. Financial time series data is typically characterized by volatility clustering of returns that influences an estimate of a stock's future price. To deal with the volatility and dependence of stock returns, this book provides procedures of combining a copula with a GARCH model. Using the copula-GARCH approach that describes the tail dependences of stock returns, we carry out Monte Carlo simulations to predict a company's movements in the stock market. The procedures are illustrated in two technology stocks, Apple and Samsung.