Standaard Boekhandel gebruikt cookies en gelijkaardige technologieën om de website goed te laten werken en je een betere surfervaring te bezorgen.
Hieronder kan je kiezen welke cookies je wilt inschakelen:
Technische en functionele cookies
Deze cookies zijn essentieel om de website goed te laten functioneren, en laten je toe om bijvoorbeeld in te loggen. Je kan deze cookies niet uitschakelen.
Analytische cookies
Deze cookies verzamelen anonieme informatie over het gebruik van onze website. Op die manier kunnen we de website beter afstemmen op de behoeften van de gebruikers.
Marketingcookies
Deze cookies delen je gedrag op onze website met externe partijen, zodat je op externe platformen relevantere advertenties van Standaard Boekhandel te zien krijgt.
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Afhalen na 1 uur in een winkel met voorraad
Gratis thuislevering in België vanaf € 30
Ruim aanbod met 7 miljoen producten
Door een staking bij bpost kan je online bestelling op dit moment iets langer onderweg zijn dan voorzien. Dringend iets nodig? Onze winkels ontvangen jou met open armen!
Je kan maximaal 250 producten tegelijk aan je winkelmandje toevoegen. Verwijdere enkele producten uit je winkelmandje, of splits je bestelling op in meerdere bestellingen.
This book presents three applications, based on Machine Learning and Genetic Programming, which are devoted to find useful patterns to predict future events. The objective is to train the algorithms by using past data to produce a classifier that identifies the positive cases and discriminates the false alarms. This work uses examples for predicting future opportunities in financial stock markets in cases where the number of profitable opportunities is scarce. However, when the number of positive examples is small in comparison with the number of total cases, the identification of useful patterns becomes a serious challenge. Nevertheless, the objective of many real world problems, is precisely to identify the minority class as the fraud detection problem, or medical diagnosis and many other examples. The techniques of this book are suitable to deal with imbalanced data sets, provide comprehensible results that allow users to understand the factors that are involved in the decision, as well as to generate a range of solutions that let the user choose the best trade off according to their risk preferences.