Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten
Wil je zeker zijn dat je cadeautjes op tijd onder de kerstboom liggen? Onze winkels ontvangen jou met open armen. Nu met extra openingsuren op zondag!
  • Afhalen na 1 uur in een winkel met voorraad
  • Gratis thuislevering in België vanaf € 30
  • Ruim aanbod met 7 miljoen producten

Entropy Randomization in Machine Learning

Yuri S Popkov, Alexey Yu Popkov, Yuri A Dubnov
€ 112,45
+ 224 punten
Levering 1 à 2 weken
Eenvoudig bestellen
Veilig betalen
Gratis thuislevering vanaf € 30 (via bpost)
Gratis levering in je Standaard Boekhandel

Omschrijving

Entropy Randomization in Machine Learning presents a new approach to machine learning-entropy randomization-to obtain optimal solutions under uncertainty (uncertain data and models of the objects under study). Randomized machine-learning procedures involve models with random parameters and maximum entropy estimates of the probability density functions of the model parameters under balance conditions with measured data. Optimality conditions are derived in the form of nonlinear equations with integral components. A new numerical random search method is developed for solving these equations in a probabilistic sense. Along with the theoretical foundations of randomized machine learning, Entropy Randomization in Machine Learning considers several applications to binary classification, modelling the dynamics of the Earth's population, predicting seasonal electric load fluctuations of power supply systems, and forecasting the thermokarst lakes area in Western Siberia.

Features

- A systematic presentation of the randomized machine-learning problem: from data processing, through structuring randomized models and algorithmic procedure, to the solution of applications-relevant problems in different fields

- Provides new numerical methods for random global optimization and computation of multidimensional integrals

- A universal algorithm for randomized machine learning

This book will appeal to undergraduates and postgraduates specializing in artificial intelligence and machine learning, researchers and engineers involved in the development of applied machine learning systems, and researchers of forecasting problems in various fields.

Specificaties

Betrokkenen

Auteur(s):
Uitgeverij:

Inhoud

Aantal bladzijden:
392
Taal:
Engels
Reeks:

Eigenschappen

Productcode (EAN):
9781032306285
Verschijningsdatum:
9/08/2022
Uitvoering:
Hardcover
Formaat:
Genaaid
Afmetingen:
156 mm x 234 mm
Gewicht:
743 g
Standaard Boekhandel

Alleen bij Standaard Boekhandel

+ 224 punten op je klantenkaart van Standaard Boekhandel
E-BOOK ACTIE

Tot meer dan 50% korting

op een selectie e-books
E-BOOK ACTIE
E-book kortingen
Standaard Boekhandel

Beoordelingen

We publiceren alleen reviews die voldoen aan de voorwaarden voor reviews. Bekijk onze voorwaarden voor reviews.